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AN ALTERNATIVE METHOD FOR A GLOBAL ANALYSIS OF

QUADRATIC PROGRAMS IN A FINITE NUMBER OF STEPS

by

Andre F. Perold

1. Introduction

The general quadratic programming problem is

minimize: 2 xTDx *eox
(1)

subject to: Ax < b

In [5], Eaves describes a procedure that in a finite number of
steps, determines either the global minimum of (1) or a halfline of the
constraint set along which the minimand is unbounded below. That a
quadratic function on any nonempty polyhedral convex set either attains
its infinum there or is unbounded below on a halfline of the set is
given to us by the Frank-Wolfe theorem, [4,6].

In this paper we shall present an alternative method that also
accomplishes this task in a finite number of steps. Like that of Eaves,
it is mainly of theoretical interest, being computationally useful only

on problems that have a small number of variables. Our approach will

be to adapt the ideas in (7] to obtain a recursive procedure, that is,




one which begins with a problem in n variables, and then reduces it
to a problem of exactly the same form in fewer than n variables.

Other finite methods for finding global minima of quadratic
programs (see for example [2]) do so by obtaining the best local minimum
and are unable to detect whether or not the constrained minimand is

unbounded below.

2. Notation

Let n denote {1, 2, ..., n}. For xERn, a Cn, let meRk

T
denote (xal, sees X )" where o = {al, Sy ak}, @ {eeel a -

X
For AER™™

» aCm, BCn, let A, denote the submatrix of

A whose rows are indexed by a; let A-B denote the submatrix of A

whose columns are indexed by B; let AaB denote (Aa ) 8

Let (D, c, A, b) denote the quadratic program in (1) where

nXn
’

D € R c €R®, AER™® and b€ R".

Let @ denote the end of the procedure.

3. Preliminary Results

We require the following elementary and well known results which
we shall state without proof (see for example [8]).

Let P(b) be a polyhedral convex set of the form

P(b) = {x € R":Ax < b}




where A € R™™, In particular
P(0) = {x € R":Ax < 0} .
3.1 Lemma: If P(b) is nonempty then P(b) is bounded iff P(0) = {0}.

3.2 Lemma: If P(b) is nonempty, and £:R" > R 1s a strictly concave

function, then

(1) f 1is unbounded below on P(b) iff P(0) # {0}; further, if
0O#y€PO) and x € P(b), then f(x + 0y) + -» as 6 + =
(i1) if P(0) = {0} then f attains its infimum on P(b); moreover

this infimum is attained only at an extreme point of P(b).

3.3 Lemma: Let x € P(b), and let y = {1:A1 X = bi}' Then x is
an extreme pointibf P(b) iff rank (AY ) =n, i.e., A has full

Y- y

column rank.

From Lemma 3.3 we obtain immediately

3.4 Lemma: There is a finite collection # of subsets of m such

that for all b, x 1is an extreme point of P(b) iff there is a y € &

such that \\
#00 , T
| i b 2
; (1) AY.X Y § ! g': l
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(ii) A;l exists

(1i1) Ag x < by where 6§ =m - y
In addition to these lemmas we shall require a finite procedure
for the convex case, that is, when the matrix D in (1) is positive
. semi-definite. There are several algorithms [3] available for this
task, and so, in what follows we shall simply assume that the convex

case can be (relatively) easily solved in a finite number of steps.

4. The Procedure

We shall assume that the constraint set {x:Ax < b} 1is non-empty,
and without loss of generality that D is symmetric.

We now proceed as follows:

4.1: The case n = 0. Here the problem is vacuous. Define

the optimal value to be zero and attained at the origin [].

4.2: Since D 1is symmetric, there exists an orthogonal matrix

Q[1l, p. 54) such that

Q'DQ = Diag Dgs »5es 1)

where the Ai are the real eigenvalues of D. Setting D = Diag (Al. - wAly xn),

c = QTc and A = AQ we obtain an equivalent quadratic program (D, c, A, b)




in the transformed variables x, where x = QTx. Let a = (1:A1 2> 0}

and B = (1:A1 < 0},

4.3: The convex case, that is, when 8 = ®. By our remarks in

Section 3, we may assume this done D{]

4.4: The non-convex case (B # ¢) 1is the interesting case.

Since D is diagonal, we may write the problem (5, E, A, b) as

M U T TS
minimize: (2 quaaxu + caxu) + (2 XBDHBXR + CBXB)
(2)
g A x +A .x
subject to A_axu A-BXB <b

The second term in the minimand is strictly concave since Ai <0
for 1 € B. By Lemma 3.2(i) the minimand is unbounded below if there
exists ;B $# 0 such that K.B;B < 0. Whether or not such a §B exists
can be determined by solving a linear program.

If such a §B does exist, the minimand in (2) is unbounded below
on the halfline {x + 6y:0 > 0} where y = (0 ;ﬂ) and x satisfies
Ax < b. Therefore the minimand of the original problem (D, ¢, A, b)
is unbounded below on the halfline {x + 0y:9 > 0} where x = Qx and
y = Qy.

If no such ;B exists, then for all ;u' the set




is bounded. This follows from Lemma 3.1. By Lemma 3.4 there is a

finite collection .# of subsets of m such that for each ;a’ ;P

is an extreme point of R(;a) iff there is a y € .# such that

AYBXH = bY - Y“xa 2
(3)
--1
AYB exists,
and
Mg i hgmbo B Wiere Gom-vy. %)
Further, since the constraint set in (2) is nonempty, there is an §;
such that R(i;) is nonempty. Since R(§;) is bounded it contains
extreme points and hence «# is nonempty.
Now, for each fixed vy €. # use (3) to eliminate the variables
;3 in (2). We do this by writing
ARDREE Y
xB H X + h (5)
where
¥ —=]1= Y -=1
H = =A A h =
Y8 ya ’ Avs®y

and substituting for ;B in the remaining constraints (4) and the

minimand in (2). This yields a reduced problem (DY, cY, AY, bY) in

the variables ;u’ where

o .




0 Y= ¥
D Do t (H") Dyt

(]
L}

Y= Y L= = oY
e ¥ ARY (cB + DBBh )

LR TRV TR L

Note that by substituting (5) into the minimand of (2) we also obtain
a constant term
Yol a5 nY 4+ ThY
8 7 (h") Deg csh :

We now apply the recursion to each of the smaller problems
(DY, cY, AY, bY), that is, we go back to step 4.1 of this procedure
with (D, ¢, A, b) replaced by (DY, cy, AY, bY). Eventually we
must terminate in a finite number of steps at either the case n =0
or the convex case.

There are now two possibilities:

(i) For some vy, the minimand in (DY, cY, AY, by) is unbounded below

on a halfline {u' + 6v':6 > 0}. Using the relation (5) and imbedding

this halfline back in the constraint set of (2), it follows that




| u' + 0 v 0> ol
(\H"u + 1 U S

is a halfline of this constraint set on which the minimand in (2) is
unbounded below. Transforming this ray appropriately using the matrix
Q yields the corresponding ray of the original set in (1) along
which that minimand is unbounded below.

(ii) For each vy, the problem (DY, cY, AY, b') has a global minimand

w' at some point u'.

Set
p = min (W + g’} .
ﬁ(ﬂ
and let
* )
Yy = argmin w' + 81}
YE .M

* *
so that p = w'o+ gY .

Then p is the global minimum of the problem (D, c, A, b) and is

attained at the point




This is readily seen to be a consequence of Lemma 3.2(ii). Transforming

back as before yields ¢ the global minimum of the problem (D, c, A, b)
: * * i g

at the point x where x = (x lxl.

This completes the procedure.
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